数据管理与数据治理的区别

数据管理和数据治理有很多地方是互相重叠的,它们都围绕数据这个领域展开,因此这两个术语经常被混为一谈。
此外,每当人们提起数据管理和数据治理的时候,还有一对类似的术语叫信息管理和信息治理,更混淆了人们对它们的理解。关于企业信息管理这个课题,还有许多相关的子集,包括主数据管理、元数据管理、数据生命周期管理等等。
于是,出现了许多不同的理论(或理论家)描述关于在企业中数据/信息的管理以及治理如何运作:它们如何单独运作?它们又如何一起协同工作?是“自下而上”还是“自上而下”的方法更高效?
在明确数据治理是数据管理的一部分之后,下一个问题就是定义数据管理。治理相对容易界定,它是用来明确相关角色、工作责任和工作流程的,确保数据资产能长期有序地、可持续地得到管理。而数据管理则是一个更为广泛的定义,它与任何时间采集和应用数据的可重复流程的方方面面都紧密相关。例如,简单地建立和规划一个数据仓库,这是数据管理层面的工作。定义谁以及如何访问这个数据仓库,并且实施各种各样针对元数据和资源库管理工作的标准,这是治理层面的工作。数据管理更广泛的定义包含dataversity上大部分主题为数据管理的文章和博客,其中有一部分是特别针对数据治理的。一个更广泛的定义是,在数据管理过程中要保证一个组织已经将数据转换成有用信息,这项工作所需要的流程和工具就是数据治理的工作。
有效的治理不仅需要it的介入,这是人们的普遍共识。尤其当业务必须更主动地参与到治理方式和数据管理其他层面(例如自助数据分析)的时候,目的是要从这些工作参与中获益。在更多的案例中,特定领域的治理可以直接应用于业务。这就是为什么治理仅需要it的介入是一个过时且应该摈弃的观点。
关注佳源信息,关注更多资讯。
【版权与免责声明】如发现内容存在版权问题,烦请提供相关信息发邮件至jy@jiayuaninfo,我们将及时沟通与处理。